Team Outlaws
Software Design Document

Project Sponsor and Mentor:
Dr. Eck Doerry

Team Members:

Quinn Melssen
Liam Scholl
Max Mosier

Dakota Battle

February 15th, 2022
Version 2.0

Table of Contents

1 Introduction
2 Implementation Overview

3 Architectural Overview
3.1 User Authentication Module
3.2 Clients Module
3.3 Email Hub Module
3.4 Courses Module
3.5 Teams/Projects Module

4 Module and Interface Descriptions

4.1 User Authentication Module

A: Description of Responsibilities

B: UML Class Diagram and Descriptions
4.2 Clients Module

A: Description of Responsibilities

B: UML Class Diagram and Descriptions
4.3 Email Hub Module

A: Description of Responsibilities

B: UML Class Diagram and Descriptions
4.4 Courses Module

A: Description of Responsibilities

B: UML Class Diagram and Descriptions
4.5 Teams/Projects Module

A: Description of Responsibilities

B: UML Class Diagram and Descriptions

5 Implementation Plan

6 Conclusion

O © © oo O W

N

N N N U U U QU U QI QI G G §
© © O N ~NOO oo~ WWw-~ 00

N DN
W =

1 Introduction

As Agile programming practices continue to take the tech industry by storm, the
importance of small teams in real world engineering workplaces is quickly increasing.
According to Goremotely.net, over 71% of tech companies either already use, or are in
the process of adopting agile methods, where small, flexible and cross-functional teams
play the central role. The prevalence of small team workgroups in the professional world
has made some wonder: why are more engineering classes in higher education not
team-based, to provide specific training in small team projects? A main reason for this is
the difficulty for faculty to manage and maintain the teams involved in such an
undertaking.

Our client Dr. Doerry has spent the last 15 years working to perfect the Northern
Arizona University’s Computer Science Capstone Program, and as such has dealt with
many of these difficulties first hand. Every year Dr. Doerry must painstakingly gather
and communicate with enough clients to provide projects for the year. This process
consists of hours of back-and-forth emails between many different potential clients to
develop appropriate project proposals. Once the projects have been gathered and
finalized, students are expected to review them and submit their preferences which are
then used to assign them to their respective projects, along with other information such
as their GPA. This process too, requires a high amount of hands on effort that could be
streamlined by a successful technology. Once the projects have a team, Dr. Doerry will
then be responsible for running the capstone course and managing the collection of
various assignments. In summary, there are three primary phases of this process, each
involving large amounts of hands-on effort:

e Gathering projects - Involves reaching out to dozens of potential clients,
exchanging hundreds of emails, and keeping track of the varying stages of each
potential project.

e Forming teams - Involves taking in preferences, GPAs, and other information
about each student by manually, then inputting all relevant information into an
algorithm, and forming teams.

e Executing class - Involves using several different modes of communication to
run the team project course, including email, websites, and verbal/written
communication.

While this process ultimately leads to a successful capstone experience, Dr. Doerry
struggles with its inefficiency; this has only been amplified as he has attempted to split
leadership of the course with another NAU Computer Science professor, Dr. Michael
Leverington.

During this transitional process, Dr. Doerry has realized that his current solution
could be streamlined both for himself and future instructors, as well as anyone who
needs to run a team-based course or project. TeamBandit will act as a portal to do just
this, breaking each of the problem areas outlined above into modules that will lower the
effort involved with each step. These modules will be examined in more detail in the
Implementation Overview section of this document. A primary focus of our design will be
on high usability, as their intent is to facilitate the running of these types of classes, not
add in unwanted complexity. In order to ensure this goal, functional and performance
requirements have been developed during the Fall Term; we briefly review these here to
establish context.

Many of the functional requirements center around the capabilities of the users,
of which there are several types. These user-archetypes can be broken down into
students, clients, mentors, and organizers. Our functional requirements have been
broken down into sections, with 3 of them loosely corresponding to each of the 3
problem areas listed above.

The first section focuses on Course Initialization which corresponds to the
‘Gathering Projects’ module. Some of the key requirements in this section focus on the
capabilities of organizers prior to a class’s formal inception, as shown;

e A.1: Afaculty member can create a faculty account.

e A.2.2: Faculty can update a status tracker for each project directly on the
dashboard. This allows faculty to keep track of where a project stands in terms of
their development stages.

e A.2.3: The dashboard includes a chain of emails from the client(s) associated
with a project that a faculty member can interact with.

Section C focuses on Team Assignments, solving many of the problems noted in
the ‘Forming Teams’ module listed above. Some of the key requirements are as follows;
e C.1: Mechanism for students to enter project preferences based on a rating
schema.
e (C.2: Faculty can assign students to projects based on the previously mentioned
project preferences.

Finally, Section D addresses many of the issues raised by the ‘Executing class’
module, attempting to implement functionality to alleviate the burdens of running these
team based classes after their inception. Some of the key high level requirements in this
module include:

e D.2: Faculty can create deliverables for students to view.

e D.2.1: Students have the ability to upload their deliverables on the web
application.
e D.4: Users can navigate to a course and view information related to that course.

The performance requirements of this project seek to further ensure ease of use
by setting failure tolerances. These tolerances will be used during user testing as a
baseline for refactoring components in order to make the application more usable. The
requirements are formatted in such a way that comparing them to real world results will
be easy, such as “80% of faculty members can upload a pdf of a deliverable description
in 1 minute after two attempts.” By observing different users attempting to complete this
process we will be able to accurately decide whether or not our performance
requirements have been met.

This document will highlight the design strategies that we will use to ensure our
requirements are fulfilled.

2 Implementation Overview

In order to solve our client’s problem, we have envisioned and designed
TeamBandit, a web application that will allow Dr. Doerry and potentially any team
manager to organize, collect information, and manage tasks to offer a team-based
course management. Features of this web application will include:

e A user authentication module to ensure that a user can sign up for an account
and securely login and view all information contained within their account. This
information includes all of the below modules.

An email hub module to organize the process of finalizing project propositions.
A clients module to keep track of, view, edit, and delete client information.

A courses module that supports adding projects, adding students, adding
mentors, allowing students to submit information like project preferences and
assignments.

e Ateams/projects module that allows teams to be created, allows students to be
assigned to teams, have websites to be created

During our implementation process our team will be using an agile work-flow to
focus on implementing the key features we want out of the web application. Every week
we plan on meeting as a team as well as with our client to discuss previous weeks
accomplishments and discuss what we need to accomplish next. This will allow us to
develop and refine our vision for the application and its user experience.

In order to create the desired web application our team identified four technology
frameworks in our Tech Feasibility Document that will help us accomplish our goal.
These frameworks include PostgreSQL, Express, React, and Node or PERN for short.

e PostgreSQL is a database management system that will allow us to have user
accounts that have information associated with them.

e Express JS will be used to pull information from our database and store
information in the database.

React will help us easily create the front end and visuals of our application.

Node will simply help us create and run our web application.

With our process and technology stack identified, our next step is to start
planning how we are going to utilize our technology to create our web application. This
will be through detailing our architectural overview below.

3 Architectural Overview

TeamBandit is made up of several distinct modules which each serve a specific
purpose These modules interact with each other in several ways to produce the desired
application functionality; planning the interactions between each module helped us to
modularize the system into manageable components. Our system’s overall architecture
is displayed in the diagram below:

User Authentication Module
A
0

Frontend GUI

v

Email Hub Module [« 1onders Dashboard Renders

A
Contains
Fetch Emails
Renders

Teams/Projects

~__ h 4 Module

Courses Module

Y

Fetch Clients A

*__’___——4) Clients Module

PostgreSQL Database

Fetch Projects

Fetch courses

A

-
-~

Fetch User Data

Figure 3: Diagram showing the high level architecture of the web application

As displayed in Figure 3, each module’s individual functionality in the system
interacts with our chosen frontend framework, React, and the database management
system, PostgreSQL to some degree. Rather than treating React and PostgreSQL as
separate modules, their functionalities will be appropriately detailed and referenced
throughout each module in section 4 Module and Interface Descriptions. Another
component that will not be fleshed out in its own module is the dashboard, also shown
in Figure 3. The reason for this is that the dashboard’s functionality is solely to use
React to display the major modules of the application. As it is still a frequently used
component in the web application, a more detailed description is provided below.

When a user opens the dashboard, they can expect to essentially see a
summary of the most recent course they visited, or favorited courses if the course
organizer is the user and chooses to favor them. From the dashboard, the user can
access any major component of the system via the accessibility selection menu on the
left—hand side of the screen. The data summaries displayed on the dashboard are able
to be interacted with in specific ways pertaining to the information being shown. An
example of this is the ability to click on a displayed email in the dashboard’s email
summary and jump directly to the email chain with that particular recipient/sender, rather
than simply opening the email hub’s standard view.

The key features and responsibilities of each module in the system architecture
are detailed belowBelow, the key features and responsibilities of each module in the
system architecture is described.

3.1 User Authentication Module

The application is account-based and access to various elements of the
application depend on the account status, so it is essential for the system to not only be
capable of identifying a user, but also to accurately authenticate that identity to ensure a
user is who they say they are. Each user is identified by an email address and a correct
password, where both are set during the sign up process by the user. The user is then
associated with a user id that is stored in the database, which assists in the creation of
an authentication token for the user.

3.2 Clients Module

A course organizer will have the job of keeping track of multiple clients and their
corresponding projects. This can get unorganized quickly, so to alleviate this, the clients
module consists of a table listing the clients and their proposed projects. Contact
information will also be available for each client, and an organizer will have the ability to
add, delete, and edit the details of a selected client. This information will be stored and
retrieved from our database system and be displayed using our frontend framework.
These can be sorted in various ways, enabling further organization of the project clients.
The information stored in this table is essential for communication between organizer
and client in the email hub module.

3.3 Email Hub Module

Below, a flow diagram of our client’s current work flow for this module is
displayed.

Reach out to . Client sends
Client agrees

Client List

clients from . in draft of
. to do project .
list project
Feedback/edits
Is the draft .
No are given to
completed?
update the draft

Figure 3.3: Diagram showing Dr. Doerry’s envisioned workflow utilizing TeamBandit to communicate with
clients.

Our client receives constant emails from different clients in different email threads.
Keeping track of all of these is an arduous process for our client. In order to fix this
current process, email chains will be created for faculty to see all of the emails
organized by clients in one place on the web application. The clients and each of their
associated emails will also be associated with a project specified by the faculty mentor.

TeamBandit's email hub will be accessible from the dashboard and simply
displays emails to and from a course organizer and the client for a project. The
organizer will be able to view all of these emails in a conversation-like format where
their sent and received messages are easily differentiated. An external email server is
used to handle the overhead of all communications, and a script simply copies the
relevant email information to the hub and organizes it accordingly. Rather than truly
performing as a server for communications, it acts as an optimized display to provide
transported information from elsewhere, the reason being the convenience of messages
being available within the application itself. The information flow of the data is as
follows: The script listens for activity on a predetermined interval, so when a relevant
message is received in the organizer’s inbox or a message meeting specific constraints
is sent out by the user, the script copies the email information to the database so it can
then be displayed on the email hub page.

3.4 Courses Module

The courses module provides the functionality necessary to create, remove, edit,
and otherwise manage courses in progress or the data contained therein. From here,

10

the course is first created and supplied necessary information for its initialization. Within
that initialized course, the course itself can be archived, individual users can be added
or removed from the course, course descriptor information can be edited, and
deliverables can be created for student submissions.

3.5 Teams/Projects Module

The teams/projects module is within the courses module as there will be team
assignments and project creations within a course. Individual students are assigned
teams, and one team pertains to a project. After a team is assigned to a project, the
administrator has the ability to add or remove students from a team. Members of a team
can submit deliverables within a course, and it will submit it on behalf of the team. The
teams/projects module communicates with the course module to associate
teams/projects with a specific course to be used for deliverables.

Now that the outline of the general features and components have been
determined, we will now break up these features into modules for further clarification,
this will be done in the below module with UML diagrams and further functionality
descriptions.

4 Module and Interface Descriptions

In order to better analyze the modules in the architecture above, each module
will be broken down into A) a short natural-language description of the responsibilities of
the component and how it fits within the larger context of the architecture, B) a UML
class diagram of the classes involved in this component, and a description of the public
interface of the component that explicitly outlines services that the component provides.
These modules are separated into their own sections below.

4.1 User Authentication Module

Every individual using TeamBandit as a means to participate in a course will
need to sign up for and have secure access to an account. These individuals include
faculty members, mentors, and students. In order to accurately detail what this module
entails, we will discuss the description of its responsibilities, draw a detailed UML
diagram to show how it’'s going to work, and describe the functionality of each function
in the diagram.

11

A: Description of Responsibilities

This module is key in making sure that our client, students, and mentors can
ensure that information is correctly stored and pulled from the database. In order to
achieve this, this module will have to take full advantage of all of the features that our
technology stack offers. These technologies include PostgreSQL, Express, React and
some minor frameworks, including Berypt and JWT.

e PostgreSQL will act as our database management system. Here, we will be able
to store information about the users such as their email, name and password.

e Express will allow us to set up ‘routes’ that will act as gateways to getting
information about users and storing information about the users into the
database.

e React will help us build better Ul and UX experiences for our users when they
sign in to or register an account in the application.

e Bcrypt will allow us to encrypt user passwords for security purposes. This will
allow the user's password to be hidden from others.

e JWT will allow us to cache the users information locally on the user’s browser so
that it will allow them to stay signed into our application.

With the above technologies, we will create a single sign-in/registration page
where users can fill out a form of information to either sign up for or sign into our
application. Once signed in, the user will be able to access the TeamBandit web
application and any information about their account. This will be done by utilizing the
JWT library to create ‘tokens’ that identify who the user is.

B: UML Class Diagram and Descriptions

In order to properly plan out the User Authentication module, we broke it down
into a Unified Modeling Language diagram to help us plan out the code for this module.
This diagram is displayed below.

12

Module 2: User Account Creation

SigninForm.js

authRoutes.js

wtAuth.js -

const express

router. postiregister”) \ fetch 5000/authilogin
router. post{"/login") =

const app
const cors R SignUpForm.js
router.get("fverify™)
. __f_ff"’ ‘“'—mq_____‘_ fetch 5000/auth/register
app.use{cors())
o) N = authorization.js = validinfo.js
app.use{express json();
app.usa{"fauth") authorizaticn() validEmail{validEmail)

app.listen{5000)

Figure Module 2: UML Diagram displaying the UML structure of the User Authentication module of the web
application

This User Authentication module will handle all of the functionalities listed below.

authRoutes.js

app.use(cors()) — Cross-Origin Resource Sharing or CORS is an HTTP-header
based mechanism that will allow our application to allow our server to indicate
the origins of our requests to the database. This function will allow us to use this
framework.

app.use(express.json()) — This function will specify using Express’s JSON
functionality. JSON is a file type where information is stored in curly brackets and
usually associated with a key value. This function will allow us to send data to
and from the database in JSON format for ease of use.

app.use(“/auth”) — This function will specify database routes to our PostgreSQL
database. These routes will include SQL Queries that will directly interact with
our database.

app.listen(5000) — This function sets up all of our database routes to be set up on
port 5000. This port will allow us to communicate directly with our routes to our
database.

jwtAuth.js

router.post(“/register”) — This function will allow us to check to see if a user is
already in the database. If the user is not in the database, this function will bcrypt
their password and insert their information into the PostgreSQL database.
router.post(“/login”) — This function will check to see if the user is already in the
database, check to see if the user has entered valid information, then generate a
JWT token which will let the web browser know that the user is signed in.

13

e router.get(“/verify”) — This function will be called whenever a user enters a new
web page in our application. It will make sure that the user has a valid JWT
token, if they don’t the user will not be able to access the page.

Authorization.js
e authorization() — This function will act as a middleware helper function that will
help router.get(“/verify”) to check if the user’'s JWT token is valid.

validinfo.js
e validEmail(userEmail) — This function will act as a middleware helper function
that will help router.post(“/register”’) and router.post(“/login”) to verify the user is
inputting a valid email. This function will implement RegEXx to help identify if the
email is valid.

SigninForm.js
e fetch 5000/auth/login — This function will be called in SigninForm with the
information that will get filled out in the form of this page. This function will call
the router.post(*“/login”) function to check if the user can log in.

SignUpForm.js
e fetch 5000/auth/register — This function will be called in the SignUpForm with the
information that will get filled out in the form of this page. This function will call
the router.post(“/register”) function to check if the user can register.

Together, these functions will help us achieve our end goal of creating a fully functional
User Authentication Module.

4.2 Clients Module

As stated in section 3, the clients module will consist of a table of clients created
by the course organizer. In order to accurately detail what this module entails, we will
discuss the description of its responsibilities, draw a detailed UML diagram to show how
it's going to work, and describe the functionality of each function in the diagram.

A: Description of Responsibilities

This module is key in making sure that the course organizer can have an
organized view of the project clients and have the ability to add, edit, and delete any
information for a particular client. In order to achieve this, this module will have to take
full advantage of many of the features that our technology stack offers. These
technologies include PostgreSQL, Express, React.

14

Using PostgreSQL, we will be able to store and pull information about the clients
such as their email, name and password.

Express will allow us to set up ‘routes’ that will act as gateways to getting
information about clients and storing information about the clients into the
database.

React will help us build better Ul and UX experiences for a course organizer
when they view the clients table in the application.

With the above technologies, we will create a centralized location of project

clients that is easily viewable by the course organizer.

B: UML Class Diagram and Descriptions

Clients Module
cligntRoutes.js

router.get("/chiants")

React Frontend

v

Clients Table

router.post]"/addClient™)

v

router. put{"feditClient™)

router.delete"/deleteCliant")

Figure 4.2: Diagram showing the UML interactions for this module

The Clients module will handle all of the functionalities listed below.

clientRoutes.js

router.get("/clients") — This function will be called when a course organizer enters
the clients table in the web application. The function will ensure that all clients are
displayed to the organizer to be viewed and edited.

router.post("/addClient") — This function will be called when a course organizer
wishes to add a client to the client table. The information that can be added is the
name of a client, their email address, company, associated projects, and any
personal notes that the course organizer has about the client.
router.put("/editClient") — This function will be called when a course organizer
wants to edit the information of an individual client in the clients table. The
information that can be edited is all of the same information that can be added.
router.delete("/deleteClient") — This function will be called when a course
organizer wants to delete the information of an individual client in the clients
table.

15

The above routes will ensure that the correct information can be viewed, added, edited,
and deleted in the clients table by the course organizer. Clients also play an important
role in the next module, the email hub module, where their information will also be
displayed to ensure an organized messaging viewing experience.

4.3 Email Hub Module

The email hub module will be a centralized location of organized email chains
differentiated by the communicating email of the project client. In order to accurately
detail what this module entails, we will discuss the description of its responsibilities,
draw a detailed UML diagram to show how it's going to work, and describe the
functionality of each function in the diagram.

A: Description of Responsibilities

This module focuses on the early stages of our client’s capstone process. It
centers on features regarding clients as well as email messages between clients. These
features include getting emails associated with capstone clients and storing them into a
database and pulling those messages from the database and displaying them on our
web application. In order to accomplish these tasks on the web application, we will need
to use the following technologies:

e PostgreSQL will act as the database management system for the web
application. Here, we will be able to store information about clients along with the
messages associated with them.

e Express will allow us to set up ‘routes’ that will act as gateways to getting
information about clients and messages and store that information into the
database.

e React will help us build a better Ul and UX experience for our users related to
how they will view the clients and messages as well as their experience creating
new clients.

e Python has a built-in library called email.parser which will allow us to pull
information from emails if our created email is carbon copied (CC’d) in the email.

With these technologies, we will create two separate locations, one where clients
can be viewed, edited and created, and another where messages from clients can be
displayed.

B: UML Class Diagram and Descriptions

In order to properly plan out the Course Initialization module, we broke it down
into a Unified Modeling Language diagram to help us plan out the code for this module.
This diagram is displayed below.

16

Email Hub Module

email_scraper.py

» Messages Table |« » r geRoutes.js

pullEmails() -
router.post(™/emails™)

React Frontend

clientRoutes.js

Clients Table e router.get("/clients™) I

router. post{™faddClient")

router.put{™editClient")

router.delete("/deletaClient™)

Figure 4.3: Diagram showing the UML interactions for this module

This Email Hub module will handle all of the functionalities listed below.

email_scraper.py
e pullEmails() — This function will be called sporadically to check to see if there are
any new emails in our TeamBandit email. If there are any new emails, this
function will take these messages and put information from them into our
database.

messageRoutes.js
e router.post(“/emails”) — This function will grab all emails associated with a given
client and organizer for use in our React code.

clientRoutes.js
e This is the same file used in the Clients Module, however, only
router.get(“/clients”) will be used to display the clients. To edit client information,
the course organizer will need to navigate to the clients module in the web
application.

Together, these functions will help us to achieve our end goal of creating an effective
Email Hub Module.

4.4 Courses Module

The courses module will act as a key module when creating TeamBandit as it
involves the course organizer creating courses. In order to accurately detail what this
module entails, we will discuss the description of its responsibilities, draw a detailed

17

UML diagram to show how it’s going to work, and describe the functionality of each
function in the diagram.

A: Description of Responsibilities

The courses module will be responsible for a multitude of actions that will be
carried out by the course organizer. Before this module fully commences, all projects
will have been created, all students and mentors will have their accounts and be
assigned to their courses, and all students and mentors will be assigned to their
projects. The actions that the course organizer may perform include:

Creating and updating a course

Deleting or archiving a course

Adding, removing, and updating users from within a course

Updating course information

Creating deliverables for students to submit directly on the web application
The above actions that an organizer can perform will ensure that a course can be
initialized successfully.

B: UML Class Diagram and Descriptions

In order to properly plan out the courses module, we broke it down into a Unified
Modeling Language diagram to help us plan out the code for this module. This diagram
is displayed below.

Courses Module

Course Table _‘_| courseRoutes.js

router.get("/courses")

router. post"/addCourse")

router. put{“/editCourse")

router. put{"/archiveCourse")

router.delete("/deleteCourse”)

React Frontend

¥

assignmentRoutes.js

router.geti®/assignments")

router.post("/addAssignment")
Assignment Table

router.put(”/editAssignment”)

router.delete("/deleteAssignment”)

Figure 4.4: UML Diagram displaying the UML structure of the Courses module of the web application

18

The Courses module will handle all of the above functionalities, which are described

below.

courseRoutes.js

router.get(“/courses”) — This function is responsible for fetching and displaying all
courses that belong to a user to that user on their courses page.
router.post(“/addCourse”) — This function will add a new course to the courses
table in the database when a course organizer specifies that a new course be
added.

router.put(“/editCourse”) — This function will edit an existing course’s information
in the courses table in the database when a course organizer specifies that a
course be edited. These edits can include changing the name of a course or
archiving a course.

router.put(“/archiveCourse”) — This function will archive an existing course in the
courses table in the database when a course organizer specifies that a course be
archived.

router.delete(“/deleteCourse”) — This function will delete a course from the
courses table in the database when a course organizer specifies that a course be
deleted.

assignmentRoutes.js

router.get(“/assignments”) — This function is called when all assignments need to
be displayed to the course organizer.

router.post(“/addAssignment”) — This function is responsible for adding a new
assignment to the assignments table in the database. It will be called when an
organizer adds a new assignment in the assignments page.
router.put(“/editAssignment”) — This function is responsible for editing an existing
assignment in the assignments table in the database. It will be called when an
organizer edits an assignment in the assignment’s settings page.
router.delete(“/deleteAssignment”) — This function is responsible for deleting an
existing assignment in the assignments table in the database. It will be called
when an organizer deletes an assignment in the assignments page.

The courses module acts as a foundation for the following teams and projects module,
which will work directly with the courses module to fulfill all of its responsibilities.

19

4.5 Teams/Projects Module

After all user accounts are created, including faculty, students, and mentors,
students and mentors will need to be assigned to teams. These teams will be formed to
work on the projects collected in the Email Hub Module.

A: Description of Responsibilities

The teams/projects module will ensure that a course organizer has the ability to
create projects within a course and assign users, such as students and mentors, to a
project. This module will be responsible for collecting the project preferences of all
students. These preferences are filled out by the students and will then be displayed to
the course organizer at the time of assigning teams on a team assignments page
located within each course. This page will consist of all student names along with some
corresponding information which includes, but is not limited to:

e Email address

e University User ID

o GPA

e Top five project preferences

Along with student information being displayed, general information such as project
numbers and the amount of students currently assigned to a team will be displayed to
the organizer.

Along with students and projects, mentors will also need to be created and will be
displayed in their own table which will contain mentor names and email addresses.
When creating a project, a course organizer will be able to assign students, mentors,
and associate clients to that project all in one place.

In order to accomplish these tasks, we will need to utilize these technologies:

e PostgreSQL will act as our database management system. Here, we will be able
to store information about students, mentors, and projects.

e Express will allow us to set up ‘routes’ that will act as gateways to getting
information about students, mentors, and projects and store that information into
the database.

e React will help us build better Ul and UX experiences for the course organizer
when they view all students, mentors, and projects in one centralized location.

B: UML Class Diagram and Descriptions

In order to properly plan out the Team Assignments module, we broke it down
into a Unified Modeling Language diagram to help us plan out the code for this module.
This diagram is displayed below.

20

Teams/Projects Module

Project Table o projectRoutes.js -

router.get{"/projects")
router.post{"faddProject”)

router.put("/editProject”)

router.delete("/deleteProject")

Student Table » studentRoutes.js

router.get("/students”)
router. post("faddStudent™)

router. put("/editStudent")

router. delete("/deleteStudent”) = Assi Li
eam ignment.js

L

#» React Front End

Mentor Table a— mentorRoutes.js R DisplayTeamAssignment()

router.get("/mentors")
router. post("faddMentor”)
router. put("/editMentar”)

router.delete("/deleteMentar")

Client Table > clientRoutes.js <

router.get("/clients")

Figure Module 3: UML Diagram displaying the UML structure of the Teams Assignment module of our
application

The Teams/Projects module will describe all of the above functionalities below:

projectRoutes.js

e router.get(“/projects”) — This function will be called when a course organizer
enters the team assignments portion of a course. The function will ensure that all
projects are displayed to the organizer to be assigned students and mentors to.
router.post(“/addProject”) — This function will add a project inside of a course.
router.put(“/editProject”) — This function will edit a project with the new
information supplied by the course organizer.

e router.delete(“/deleteProject”) — This function will delete a project if specified by

the course organizer.

studentRoutes.js
e router.get(“/students”) — This function will be called when a course organizer

enters the team assignments portion of a course. The function will ensure that all

21

students are displayed to the organizer to be assigned to a project by the
organizer.
router.post(“/addStudent”) — This function will add a student inside of a course.
router.put(“/editStudent”) — This function will edit a student with new information
supplied by the course organizer.

e router.delete(“/deleteStudent”) — This function will delete a student from a course
if specified by the course organizer.

mentorRoutes.js

e router.get(“/mentors”) — This function will be called when a course organizer
enters the team assignments portion of a course. The function will ensure that all
mentors are displayed to the organizer to be assigned to a project by the
organizer.
router.post(“/addMentor”) — This function will add a mentor inside of a course.
router.put(“/editMentor”) — This function will edit a mentor with new information
supplied by the course organizer.

e router.delete(“/deleteMentor”) — This function will delete a mentor from a course if
specified by the course organizer.

clientRoutes.js
e This is the same file used in the Clients Module, however, only
router.get(“/clients”) will be used to display the clients to be associated with a
project. To edit client information, the course organizer will need to navigate to
the clients module in the web application.

TeamAssignment.js
e This component will utilize all of the above functions in order to get all necessary
information for team assignments for the course organizer.

5 Implementation Plan

TeamBandit's development cycle will take place over the course of the next few
months and will utilize a continuous integration approach in order to get the product in
user’s hands as soon as possible. Development has already begun, starting in
December with the creation and formatting of our AWS server, which is where we will be
hosting our application. This included tasks such as downloading Node (server
backend), React (frontend framework), PostgreSQL (database), as well as all of the
necessary tools for development such as node package dependencies. Our envisioned
project timeline moving forward is summarized in Fig. 5.0.

22

174 - 22 084

44114

8 1|\ - 72 o4 sfep g

ARRAE T sfepo, |

:J_ -7 a4 skepg

8 Go4 - 62 Uer

laed-6zer -~ sheppl

o3~z fer (YR

§7 Ver - 7z ver < skep
gz ver - 7z ver N

{2 Ver - 6 uer

Juawauljay + Bunsay 1as
sainjea4 ulwpy yuapnig
uolyea 19afqQ JualnuapMS
uoyeaI) 103[qQ Juspmig
uorjeifaju) aseqejeq

1d18 uoy)hd Jesied |lew3
S3Injea4 ulwpy as1no7)
UoJ3I3NS qnH |lew3

u0}ajays ofied asinon

sajnoyebed Buipue

aseajay |euy ouiag eydry

fepoy

Ue|d Juswidojara(Jipueg wes|

Figure 5.0: This Gantt chart shows key components in our development plan moving forward

23

As shown, each component is allotted a relatively short amount of time due to
our minimal focus on the aesthetics of the project in the early phases of development.
Our plan begins with setting up the routes for each of the pages of TeamBandit. Doing
this early allows for each developer to work on their individual components without
having to merge changes to the routing files, minimizing the amount of conflicts we will
have to manage.

After routes have been established the development process will be broken down
into modules, namely the course creation/execution module, the client
acquisition/communication module, and the student creation module. Each of these
modules work with one another to create the whole of TeamBandit, and as such each
developer will maintain a strong understanding of the project as a whole.

To begin our implementation we start with loose skeletons of each module to give
ourselves a foundation to work off of. This is a short process and should only take a few
days as shown by the 7 day allotment. After these initial steps have been completed
each developer will move into fleshing out the functionality of their respective portion.

Liam Quinn Dakota Max
-Adding courses -Email parsing -Homepage display | -Project creation
-Setting up course | script -Status tracker Assigning students
page/metadata -Displaying emails | -Mentor account to project
-Student account in hub route -Student/Mentor
route -Sending emails to | -Adding clients logins/account
-Site settings new users -Client table creations

Fig 5.1: Table highlighting each developer’s major priority, with more detail found below

The separation of concerns between each of these tasks allows our developers
to work simultaneously while minimizing the needs for complex merging. As each of the
pieces come together we will move into a more iterative process, garnering feedback
from our client and quickly implementing these changes during our User/UX Testing
phase throughout the end of the project's development cycle. This will be the majority of
the focus during the month of March.

6 Conclusion

Upon completion of the implementation plan, each of these modules will
assemble the discussed components into the fluid web application intended by the
design. Connecting the course initialization, user account creation and authentication,
and team assignment/management mechanisms together will allow the course
organizer to effectively oversee the progression of several courses while maintaining
organization and control.

24

This record of design established a concrete set of primary functional
components and outlined the high-level architecture and overview to implement it,
thereby laying out a template for modularizing each major element of functionality.
These modules and their respective interfaces have been extensively elaborated upon,
paying special attention to the specific roles each member of the development stack
plays in the functionality of these modules as well as how these roles contribute to
TeamBandit’s overall control flow.

Tying together the features of each interface with its respective underlying
implementation details provides a lower-level blueprint of how the application will
actually be interacted with to not only the anticipated user/client, but also can be
doubled as an explicit guide to the development of each discrete module’s distinct
feature requirements. The most valuable outcome provided by this design process is
the explication of the ground-level specifics that had not been anticipated prior to the
software development stage. With these specifics resolved and simplified in writing, the
remainder of the development process essentially becomes translation to code.

These specific developments glue together the vision that guides the entirety of
TeamBandit: Reflecting the importance of working together in a productive environment.
For far too long, adequately preparing students for the world that awaits them was
difficult because the real world is not easily mirrored in education. Courses at the
university level actively struggle to provide an environment of learning that aligns with
the indispensable need for collaborative progress in every industry- until now.

With the development of these details behind us, we're confident this application
will not only support the course management of Dr. Doerry, but hundreds of course
organizers across the world by heavily reducing the demands for maintaining classes
focused around applying the content in a team setting. Even further, the coordinated
application of skills will provide the students enrolled in those courses with an approach
to learning that reflects reality.

